From cells to 3D tissues: Creating complex 3D tissue models using CELLINKs technologies

In this presentation, we will discuss how 3D bioprinting technologies enable the fabrication of more reliable tissue models, which have wide application, including the development and validation of the efficacy of pharmaceutical products, screening of drug therapies and understanding of tissue development and oncology processes.

Continue reading “From cells to 3D tissues: Creating complex 3D tissue models using CELLINKs technologies”

Creating centimeter-scale complex tissue geometries within seconds via Volumetric Bioprinting

Our finite ability to spontaneously regenerate our organs, associated with increasing longevity, reinforces the need for engineered human tissues. Bioprinting made constructing architecturally complex, centimeter-scale 3D living structures possible in hours, arranging cells and materials into pattern that can hasten maturation into functional tissues. Nevertheless, biological elements such as cells and biomolecules are sensitive to physical stimuli and have shortened lifetime in solution. This can result in the reduction of cell function proportionally to printing time.

Continue reading “Creating centimeter-scale complex tissue geometries within seconds via Volumetric Bioprinting”

Robotic-based in situ bioprinting

giovanni vozzi

Bioprinting has provided several advantages to traditional tissue engineering approaches for fabricating scaffolds for organ/tissue regeneration thanks to a precise and controlled biomaterials processing. Nevertheless, this technology, also known as in vitro bioprinting, suffers from several limitations when considering its clinical application, such as scaffold handling difficulty, risk of contamination, need of a maturation period in a bioreactor and shape/morphology of the bioprinted construct not perfectly matching with the defect site.

Continue reading “Robotic-based in situ bioprinting”

Biofabrication and 3D Printing for Precision Healthcare

yan yan shery huang

The merging of biological matter with engineering components, could transform a number of emerging fields, including regenerative medicine and bio-machine interfaces. This presentation considers my group’s recent work in biofabrication and bioprinting techniques across different length scales. Particular focus is placed on the fabrication of extracellular matrix fibre analogue, embedded 3D printing, and guided tissue assembly that could extend the feature resolution and material functionality of tissue constructs.

Continue reading “Biofabrication and 3D Printing for Precision Healthcare”

3D printing of scaffolds and biomolecules for enhanced tissue repair

Tissue engineering typically uses a combination of biomaterial scaffolds, cells and signaling mechanisms (such as growth factors or mechanical stimuli) to restore the function of damaged or degenerated tissues. The research carried out in our laboratory investigates each of these three areas with target applications in tissues including bone, cartilage, skin, cardiovascular, respiratory, and neural tissues. 3D printing has allowed us to tune the mechanical properties of our scaffolds and to develop bioinks with enhanced regenerative potential.

Continue reading “3D printing of scaffolds and biomolecules for enhanced tissue repair”

From Scaffold Design to Control Stem Cell Fate to Bioprinting

lorenzo moroni

Organs are complex systems, comprised of different tissues, proteins, and cells, which communicate to orchestrate a myriad of functions in our bodies. Technologies are needed to replicate these structures towards the development of new therapies for tissue and organ repair, as well as for in vitro 3D models to better understand the morphogenetic biological processes that drive organogenesis.

Continue reading “From Scaffold Design to Control Stem Cell Fate to Bioprinting”